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We propose a general scheme for the “logic” of elementary propositions of physical
systems, encompassing both classical and quantum cases, in the framework given by
Non-Commutative Geometry. It involves Baire∗-algebras, the non-commutative version
of measurable functions, arising as envelope of the C∗-algebras identifying the topology
of the (non-commutative) phase space. We outline some consequences of this proposal
in different physical systems. This approach in particular avoids some problematic
features appearing in the definition of physical states in the standard (W ∗-)algebraic
approach to classical mechanics.
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1. INTRODUCTION

In many respects Non-Commutative Geometry (NCG) (Connes, 1994) ap-
pears as the most complete mathematical setting for a unified description of
quantum and classical physical systems, besides being a source of some highly
imaginative ideas in the attempt of constructing a unified theory of fundamental
forces including gravity (see e.g. Doplicher et al., 1995; Froehlich et al., 1995;
Connes et al., 1998; Witten, 2001, and references therein).

In this paper we propose a characterisation of the lattice of elementary propo-
sitions, i.e. the “logic”, of quantum and classical systems which appears to fit nat-
urally in the framework of NCG and solves some problematic feature of the more
standard W ∗-algebraic approach (see e.g. Thirring, 1981; Primas, 1983; Haag,
1992; Redei, 1998).

A root of Non-Commutative Geometry is the idea that one can generalise
many branches of standard functional analysis, such as measure theory, topology
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and differential geometry, by replacing the commutative algebras of functions over
some space X by a suitable non-commutative algebra which may in a sense be
interpreted as the “algebra of functions over a non-commutative space.”

In the commutative case one can consider various degrees of regularity
of the functions ranging from measurable, to continuous, to smooth. The non-
commutative analogue of the algebra of complex bounded continuous functions is a
C∗-algebra, whereas spaces of complex essentially bounded measurable functions
(L∞) are generalized by von Neumann algebras or, in abstract form, W ∗-algebras.
Algebraic generalizations of spaces of smooth functions are pre-C∗-algebras, i.e.
∗-subalgebras of a C∗-algebra closed under the holomorphic functional calculus.
Probability measures on spaces of continuous functions find a non-commutative
generalization in the concept of algebraic states, henceforth simply states: the lin-
ear positive normalized functionals on a C∗-algebra; in particular Dirac measures
with support on one point are generalized by pure states, i.e. states that cannot be
written as convex combinations of other states. (Notice that since a C∗-algebra
is a Banach space, states are elements of its dual as they are continuous being
bounded.)

A link with quantum theory appears when quantum mechanics is interpreted
as a “mechanics over a non-commutative phase space” in the spirit of Heisenberg
and Dirac. If we consider a quantum non-relativistic elementary particle with
classical analogue i.e. without internal degrees of freedom, the appropriate algebra
of “smooth functions, or observables, in phase space” is the Weyl algebra generated
by the bounded version,

ei �α·�qei �β· �p = ei �β· �pei �α·�qeih̄
�α· �β
2 , (1)

of the celebrated Heisenberg commutation relations:

qipj − pjqi = ih̄δij , (2)

where αi, βi ∈ R and {qi}3
i=1 and {pi}3

i=1 are the “coordinates” of the “non-
commutative phase space” corresponding respectively to canonical coordinates
of the underlying commutative classical configuration space and their conjugate
momenta. It turns out that the corresponding C∗-algebra of “continuous bounded
observables” is isomorphic to the C∗-algebra K(H) of compact operators on an
infinite dimensional separable complex Hilbert space, H, and the W ∗-algebra
of “bounded measurable observables” is isomorphic to the algebra B(H) of all
bounded operators on H. (The qualification “continuous bounded” used above is
meant to evocate the analogy with the commutative case and is not referred to
norm continuity of operators on Hilbert spaces, which of course is equivalent to
boundedness.)



Quantum Logic and Non-Commutative Geometry 53

A relation with quantum logic then appears as follows. It has been recog-
nised in the seminal work of Birkhoff and von Neumann (1936), that the system of
elementary physical propositions corresponding to yes-no experiments of quan-
tum mechanics can be represented as the complete orthomodular lattice of closed
subspaces of a separable Hilbert space H. (Actually, orthomodularity was not in-
troduced in Birkhoff and von Neumann, 1936, but by Piron, 1964; for an historical
comment see Redei, 1998.) Such lattice can be characterized also algebraically
in terms of the associated orthogonal projectors, p, in H, with the well known
definitions of orthocomplement ⊥, meet ∧ and join ∨ operations: p⊥ = 1 − p,
p1 ∧ p2 =limn→∞(p1p2)n =limn→∞(p2p1)n, p1 ∨ p2 = (p⊥

1 ∧ p⊥
2 )⊥ and partial

ordering defined by p1 ≤ p2 iff p1 = p1 ∧ p2. In turn, the projectors are the self-
adjoint elements of the von Neumann algebra B(H) satisfying p2 = p. The set
of projectors of any W ∗-algebra has the structure of a complete orthomodular
lattice with lattice operations defined algebraically as above. Therefore it has been
proposed to identify as a model for the propositional lattice of physical systems
the lattice of projectors of a W ∗-algebra.

A classical system in this setting is given in terms of a commutative W ∗-
algebra; the corresponding lattice of propositions is therefore distributive, i.e.
a Boolean algebra. Hence the transition from the classical to the quantum level
corresponds to the elimination of the commutativity postulate, due to the existence
of the universal constant h̄, which is replaced by 0 in classical mechanics. More
precisely, for a classical particle the W ∗-algebra generated by the commutation
relation (1) with h̄ = 0 is taken to be L∞(�,ωL) where � is the phase space and
ωL is the Lebesgue measure on � which coincides with the Liouville measure
given in terms of the symplectic form.

Although the W ∗-approach has the great virtue of describing classical and
quantum systems and the related logics in a unifying canonical scheme, it reveals
some drawbacks in the definition of states at the classical level. In the algebraic
approach the states describe the “states of knowledge” of the observable quantities
and pure states correspond to maximal knowledge. However in classical systems
points in phase space are of zero ωL-measure and hence “invisible” to L∞(�,ωL).
Therefore, as already noticed by von Neumann, it is not naturally defined in this
setting the most fundamental state of classical mechanics corresponding to a single
point in phase space selecting “initial conditions” of the system; see Halvorson
(2001) for a more refined and recent analysis of the problem. Although this fact
could be attributed to the practical impossibility of a precise measurement, it is
at least philosophically somewhat unnatural. For a related problem e.g. Teller
(1995) argued that “if we believe that systems possess exact values for continuous
quantities, classical theory contains the descriptive resources for attributing such
values to the system, whether or not measurements are taken to be imprecise in
some sense.”



54 Marchetti and Rubele

Instead, points in phase space can be taken as support of Dirac measures and
these are naturally defined as states on C0(�), the C∗-algebra of bounded contin-
uous functions on � vanishing at infinity, generated by the commutation relations
(1) with h̄ = 0. However C0(�) does not contain non-trivial projectors, since these
are characteristic functions which are not continuous. Analogously the C∗-algebra
of compact operators on a separable Hilbert space, K(H), generated by (1) with
h̄ �= 0, does not contain a lattice of projectors even σ -complete, i.e. stable under a
countable number of meet and join operations, and this is the weakest reasonable
completeness to require in a logic, excluding “unsharp” approaches, see e.g. Dalla
Chiara and Giuntini (2001) (we use the word “complete” to denote stability under
an arbitrary, even non countable, number of meet and join operations). On the
other hand the pure states on K(H) are exactly in correspondence with the rays of
H, as required on physical grounds. In fact the dual of K(H) is isomorphic to the
space of trace-class operators on H, the condition of positivity and normalization
then identifies the states as the “statistical matrices.” The pure states correspond to
one dimensional projectors hence to rays, but this correspondence does not hold
for the pure states on B(H), which include also unphysical “improper states.” (To
save the physically required correspondence in this case one has to restrict to the
normal states, i.e those which are completely additive.)

Hence in a NCG setting as a natural framework to embed an algebraic model
of elementary propositions one is naturally looking for a “space” in general larger
then the C∗-algebra of “continuous bounded observables” A, but smaller than the
W ∗-algebra of “essentially bounded measurable observables,” and containing a
σ -complete orthomodular lattice of projectors. Furthermore one would like this
space still to be some “closure” of the C∗-algebra A, which in the NCG approach
identifies the topology of the non-commutative phase space and is taken as the
basic algebra, identifying the space of physical states.

This “space” in fact exists, it is called Baire∗-algebra and can be described in
the above terminology as the C∗-algebra of (Baire) measurable bounded functions
or observables on a generally “non-commutative” space, and it is generated by A,
as a suitable enveloping algebra. We denote it by B(A).

We propose to identify the lattice of projectors of B(A), denoted by P(B(A)),
as a model for the lattice of elementary propositions of the physical systems
described by A, and to identify the logical states φL [see next section] as the
restriction to P(B(A)) of the lift φ̃ to B(A) of states φ on A. If a ∈ B(A),
then φ̃(a) is the expectation value of the measurable observable a in the state
φ̃ and in particular if p is a projector in B(A), then φ̃(p) = φL(p) ∈ [0, 1]
yields the probability that the proposition represented by p is true in the logical
state φL.

As it will be discussed in Section 3, this setting solves the above quoted
difficulty of the W ∗-algebra approach. The scheme can be summarized by means



Quantum Logic and Non-Commutative Geometry 55

of the following commutative diagram

P(B(A)) B(A) A

[0,1] C

φL
˜φ φ

i−→ j←−

k−→

�
�

�
��

�
�

�
��

�
�

�
��

where i, j and k are the obvious injections. We remark that a consequence of
this proposal is that the lattice of elementary propositions of a physical quantum
system, although always orthomodular σ -complete it is not always complete,
nor atomic, nor Hilbertian (i.e. isomorphic to all the orthogonal subspace of a
separable Hilbert space). These specific features are encoded in the C∗-algebra of
“continuous bounded observables” A of the system. More obviously, for classical
systems A is abelian and this implies a distributive property for the lattice of
propositions.

In the rest of this paper we will make mathematically precise the setting
described above. Although the mathematical results presented here are not original
the overall scheme and its degree of generality to the best of our knowledge are
novel.

2. LOGICAL STATES

Let L be the orthomodular σ -complete lattice assumed to describe the set
of elementary propositions of a physical system. A logical state (in the sense
of Mackey–Jauch–Piron (Mackey, 1963; Jauch, 1968; Piron, 1976)) φL is a σ -
orthoadditive map from L to [0,1]; more explicitly, if P is a proposition in L,
then φL(P ⊥) = 1 − φL(P ), and if {Pi}i∈I is a countable number of propositions
pairwise orthogonal, i.e. Pi ≤ P ⊥

j for i �= j , then φL(∨iPi) = ∑

i φL(Pi). φL(P )
is the probability that the proposition P is true in the state φL. A logical state φL is
“pure” if it cannot be written as a convex combination of other logical states i.e. if
for any two logical states φ1 and φ2 the equation φL = αφ1 + (1 − α)φ2, 0 < α <

1, implies φL = φ1 = φ2. Pure logical states correspond to the maximal knowledge
attainable on the propositional system. A logical state is called “normal” if is
completely orthoadditive.

In the W ∗-algebraic approach we have the following:

Theorem 2.1. (Cirelli and Gallone, 1973) Identifying as a model for L the
lattice of projectors of a W ∗-algebra M, the restriction to P(M) of normal states
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on M are normal logical states; furthermore pure logical states corresponds to
restriction of pure states.

As discussed in the introduction the proposal to identify the logical states as
restriction of normal states on W ∗-algebras excludes the states corresponding to
single points in phase space in classical systems unless the phase space is discrete
in view of the following:

Theorem 2.2. A state on a W ∗-algebra M is normal iff it is an element of its
predual M∗.

Since for classical systems M = L∞(�,ωL) and M∗ = L1(�,ωL), this excludes
the Dirac measures concentrated on one point of � as they do not belong to
L1(�,ωL).

On the other hand the requirement of normality is perfectly suited for a
standard (i.e. without, or at must with a countable set of superselection sectors)
quantum mechanical system with finite dynamical degrees of freedom, where
we know that physical states are “statistical matrices,” which are positive trace 1
elements of J1(H), the space of trace-class operators on the separable Hilbert space
of physical vector states H. In this case, in fact, M = B(H) and M∗ = J1(H).

The choice of a W ∗ or von Neumann algebra as foundational in a C∗ approach
is also mathematically not entirely natural in NCG, as Connes (1993) pointed out:
“It is true, and at first confusing, that any von Neumann algebra is a C∗-algebra,
but not an interesting one because it is usually not norm separable. For instance
let (X,µ) be a diffuse probability space (every point p ∈ X is µ-negligible), then
L∞(X,µ) is a von Neumann algebra but it is not norm separable and its spectrum
[see definition after Theorem 3.1 and comment after Definition 3.2] as a C∗-
algebra is a pathological space that has little to do with the original standard
Borel space X.”

The somewhat unsatisfactory situation outlined above is avoided if we intro-
duce the notion of Baire∗-algebra.

3. BAIRE∗-ALGEBRAS

To put in a proper perspective the definition of a Baire∗-algebra it is convenient
to recall some basic notions of the theory of Baire functions, whose space is the
commutative version of a Baire∗-algebra.

Let (X,�) be a measure space, where � denotes a σ -algebra of subsets
of X. A real or complex function is �-measurable if f −1(B) ∈ � for every B

borelian in R or in C, respectively. A class F of real functions over X is called
monotonically sequentially complete if every limit of a monotonic sequence of
functions of F belongs to F . The class of real �-measurable functions is an
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algebra monotonically complete σ -stable under the lattice operations of meet and
join.

Let X be a locally compact topological space. A compact set of X is of type
Gδ if it is a countable intersection of open sets of X. The class of Gδ compacts
generates the σ -algebra BX of the Baire sets of X. This is the smallest σ -algebra
from which one can reconstruct the topology of X (Halmos, 1950).

A real function on X is called a Baire function if it is BX-measurable; a
complex function is a Baire function if both its real and imaginary part are Baire
functions. The class of real Baire functions is the smallest class including all
continuous function in X and the limit of every bounded monotone sequence of
them. The class of complex Baire functions on X will be denoted by B(X). If X

is a metric space then the σ -algebra of Baire sets coincides with the σ -algebra
of Borel sets, generated by the open sets of X, and the Baire functions are Borel
functions. For this reason Baire∗-algebras were called Borel∗-algebras in Pedersen
(1979). To each point p ∈ X is associated a Dirac measure dµp on B(X) with
support {p} and mass 1.

To discuss the generalization to a non-commutative setting we need some pre-
liminary definitions which extend to such a setting the basic notions involved in the
constructions outlined above. A C∗-algebra A is called monotonically sequentially
complete if every bounded monotone sequence of the self-adjoint part of A, Asa ,
possesses a limit in Asa. A state φ over a monotonically sequentially complete
C∗-algebra A is called σ -normal if for every bounded monotone sequence {xn}n∈N

in Asa we have

φ
(
∨

n

xn

) =
∨

n

φ(xn).

Definition 3.1. (Pedersen, 1979) A C∗-algebra B is called a Baire∗-algebra if
it is monotonically sequentially complete and it admits a separating family of
σ -normal states.
Notice that, as discussed below, in the commutative case B(X) is a Baire∗-
algebra with separating family of σ -normal states generated by the Dirac measures
{dµp}p∈X.

An important result connecting Baire∗ and W ∗-algebras is the following:

Theorem 3.1. If a Baire∗-algebra has a faithful representation in a separable
Hilbert space, then it is isomorphic to a W ∗-algebra.

There is a natural “closure” of a C∗-algebra to obtain a Baire∗-algebra. To present
this construction we need some preliminary definitions. Given a C∗-algebra A,
let Â, be its spectrum, i.e. the set of (equivalence classes of unitarily equiv-
alent) irreducible representations of A. Let φ be a (representative) pure state
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corresponding to a point of Â, and πp the corresponding representation. The atomic
representation of A is given by πa = ⊕

φ∈Âπφ and it is a faithful representation

of A.
Then we have the following:

Definition 3.2. (Baire∗ enveloping algebra) (Pedersen, 1979) Given a C∗-algebra,
A, and a subset M ⊂ Asa , we define the monotone sequential closure of M , B(M),
as the smallest subset of the atomic representation πa(Asa), containing πa(M) and
the limit of every monotone sequence of elements of πa(M). The Baire∗ enveloping
algebra of A, is given by

B(A) ≡ B(Asa) + iB(Asa).

B(A) is a Baire∗-algebra with the family of σ -normal states given by the unique
extension of the states on A to B(A).
To better understand the meaning of the Baire∗ enveloping algebra notice that if A is
commutative and separable, then by the Gel’fand isomorphism (see e.g. Pedersen,
1979; Thirring, 1981), the spectrum Â is a locally compact Hausdorff space and A

is isomorphic to C0(Â), the space of continuous function in Â vanishing at infinity
(if A is non-compact). Therefore B(A) = B(Â), i.e. the enveloping Baire∗-algebra
is exactly the algebra of complex Baire functions on A. Conversely if A = C(X)
with X locally compact, Â � X as a topological space and ̂B(A) � X as a Borel
space. The irreducible representations correspond to pure states given by the
normalised Dirac measures {dµp}

p∈Â.

Notice that since B(Â) has no faithful representations on a separable Hilbert
space unless A is discrete, then in general the commutative Baire∗-algebra B(A)
is not a W ∗-algebra. However we have the following result refining the previous
one:

Theorem 3.2. (Davies, 1968) If A has a faithful representation π on a separable
Hilbert space then B(π (A)) � π (A)′′ i.e. it is isomorphic to the von Neumann
algebra generated by π (A) and its σ -normal states are the normal states of the
von Neumann algebra.

For the logical interpretation, the crucial property of Baire∗-algebras is the fol-
lowing:

Theorem 3.3. The set of projectors P(B) of a Baire∗-algebra B is an orthomod-
ular σ -complete lattice.

Furthermore, since the extensions to B(A) of the states on A are σ -normal, we
have:
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Proposition. The restriction of the σ -normal states of the Baire∗-enveloping al-
gebra B(A) to P(B(A)) are logical states.

The identification of Baire∗-algebras as the abstract setting for bounded measur-
able observables is the one that makes it transparent the interpretation of quantum
mechanics as a “theory of quantum probability.” Although there is a high amount
of papers written on this topic, it seems that a framework like the one we are
outlining here is not considered. As an example, in a quite recent general review
on the subject (Streater, 2000), R. F. Streater pointed out that: “Though the clas-
sical axioms were yet to be written down by Kolmogorov, Heisenberg, with help of
the Copenhagen interpretation, invented a generalisation of the concept of prob-
ability, and physicists showed that this was the model of probability chosen by
atoms and molecules.” However, the algebraic (W ∗-)approach envisaged therein
appears less close than ours to the standard treatment of probability on topological
measure spaces, where the Borel or Baire structure is determined by the topology,
as B(A) is determined by A.

We end this section with a

Remark. In the definition of enveloping Baire∗-algebra we can replace the atomic
representation πa with the universal representation πu = ⊕

φ∈S(A)πφ , where S(A)
is the set of states on A and the correspondingB(A) is isomorphic to the one defined
via πa . Then B(A) ⊂ πu(A)′′, which is the universal enveloping von Neumann
algebra of A.
Therefore the σ -complete orthomodular lattice of B(A) describing the elementary
propositions of the system characterized by A can be embedded in the complete
orthonormal lattice of πu(A)′′; for the relevance of the existence of the embedding
from the logical point of view see Dalla Chiara and Giuntini (2001).

4. CONSEQUENCES FOR THE LOGIC OF PHYSICAL SYSTEMS

Using the notions introduced in the previous section one can make precise the
scheme outlined in the Introduction. At the foundational level one considers the
algebra of “continuous bounded observables” of the physical system, described
by a C∗-algebra A, possibly given as the closure of a pre-C∗-algebra of “smooth
observables,” and the states on A giving the expectation values of the observables.
The algebraic realization of the lattice of elementary propositions corresponding
to yes-no experiments, concerning the system described by A is given by the σ -
complete orthomodular lattice of the projectors of the Baire∗ enveloping algebra
B(A), i.e. P(B(A)). Logical states are given by the restriction to P(B) of the lift
to B(A) of the algebraic states on A. Then pure logical states describing maximal
knowledge correspond to pure states on A; notice that in general they are not pure
states of B(A).
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Let us comment on some implications of the above scheme for the logic of
elementary propositions of physical systems.

(1) Systems in classical mechanics.
If the phase space � of the system is a locally compact Hausdorff space, then

A = C0(�) and B(A) = B(�). The states on A are the regular Borel probability
measures which have a unique extension to B(�). Pure states are Dirac measures
{dµp}p∈� with support on one point in phase space , hence solving the problem
outlined in the Introduction.

Remark. This solution was first envisaged in Davies (1968) and Plymen (1968)
where instead of Baire∗ enveloping algebras, �∗ enveloping algebras were used,
roughly speaking replacing monotone sequential closure with weak sequential
closure. In particular in the abelian case the two concepts coincide.

The lattice of propositions P(B(�)) is both atomic and distributive. As always
in the algebraic setting, there is a direct correspondence between the abelian
structure of the algebra of observables characterising their classical nature and the
distributive property of the lattice of elementary propositions.

(2) Quantum mechanical system with countable superselection sectors.
Example. Quantum mechanics of an elementary particle without spin.

The algebra A is the C∗-algebra generated by the Weyl commutation relations
(1) and it is isomorphic to K(H) with H separable infinite dimensional; in view
of Theorem 3.2, B(A) � K(H)′′ � B(H); the σ -normal states correspond to the
statistical matrices. P(B(A)) is atomic and Hilbertian. In this specific example it
is also irreducible, in correspondence with the absence of superselection sectors.
Notice that in the Baire approach for classical system naturally appear the Dirac
measures excluded in the W ∗ approach, whereas in quantum mechanics are nat-
urally excluded the singular, i.e. non-normal, states of the above approach. By
the way, our approach also provides a natural justification for the choice made
e.g. in Duvenhage (2002) (see also Clifton et al. (2003) for a variant) to discuss
information theory in the algebraic setting using measurable functions in classical
mechanics and bounded operators in quantum mechanics.

Remark. The Baire approach permits also to avoid a problematic feature appearing
in the definition of states in the temporal logic approach proposed in Primas (1983),
where, motivated by ontological considerations (which of course one may not
agree with), a distinction is made between “ontic” states and “epistemic” logical
states. Let L be the orthomodular σ -complete lattice assumed to describe the set of
proposition of a physical system. An “ontic” state is a lattice ortho-homomorfism
ρ of a maximal orthomodular sublattice T of L into B2, the Boolean algebra of
truth values. The requirement on T to be maximal means that it does not exist an
orthomodular sublattice T ′, containing properly T , to which ρ can be extended as
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ortho-homomorphism inB2. This requirement corresponds to the physical intuition
of a state with “maximal information” and in the algebraic approach these are the
pure algebraic states. An “ontic” state is called normal if ρ is a σ -homomorphism.
In this approach an “ontic” state refers to “actualized” properties the system has
(at some time). States which refer to our knowledge are called “epistemic.” On
this basis, if L is the lattice of projectors of a W ∗-algebra M, ontic states are
identified with (arbitrary, even non normal) pure states and epistemic states with
normal states. Therefore “ontic” states are not a subset of “epistemic” states.
Furthermore only for normal states it has been proved that every ontic states on
P(M) has a unique extension to a pure state of M and every pure state on M

defines a unique ontic state. For non normal states the situation appear obscure,
in particular for W ∗-algebras that do not admit pure normal states! Instead in the
Baire approach, i.e. if L = P(B(A)), one could simply identify “epistemic” states
with the σ -normal states and the “ontic” would be those corresponding to the lift
of the pure states on A, thus a subset of the epistemic.

(3) Quantum mechanical system with non countable superselection sectors.
Example. Quantum mechanics of an elementary particle without spin on a

circle S1.
The algebra A is the C∗-algebra generated by the Weyl commutation relations

einϕeiβp = eiβpeinϕeih̄
nβ

2

where ϕ is the angle parametrizing the circle S1, n ∈ Z, β ∈ [0, 2π ]/h̄.
Inequivalent irreducible representations are labelled by an angle θ ∈ [0, 2π )

and the corresponding Hilbert space will be denoted by Hθ , see e.g. Thirring
(1981) and for a deeper analysis Cavallaro et al. (1999). These are the so-called
θ -sectors and they arise physically e.g. in models where the particle is charged
and coupled to a vector potential whose magnetic field strength is supported in a
region in the interior of the disk bounded by the circle S1, in the region forbidden
for the particle motion.

A magnetic flux  through the disk induces a representation of A labelled
by θ =  mod 2π . Hence A � ⊕θK(Hθ ) � C(S1,K(H)) with Hθ and H separa-
ble infinite dimensional. B(A) � B(S1,B(H)), the Baire (or Borel) functions on
S1,B(H)-valued.

P(B(A)) is atomic, coincides with the lattice of closed subspace of ⊕θH,
but is not the usual Hilbert lattice of Hilbert Quantum Logic, since ⊕θHθ is not
separable, so that in particular the lattice is not complete.

(4) Local observable algebras in massive RQFT.
The algebraic description of (massive) Relativistic Quantum Field Theory

(RQFT) is based on the following structure (Haag, 1992): an inclusion preserving



62 Marchetti and Rubele

map O → A(O) assigning to each finite contractible open region (or alternatively
open double cone) O in Minkowski space-time, M4, the abstract C∗-algebra of
observables measurable in O. The C∗-algebra generated by the net {A(O)}O⊂M4

via inductive limit and norm closure is denoted by A and is called the algebra of
quasi-local observables. Locality holds: if O1, O2 are spacelike separated, then
A(O1) commute with A(O2) elementwise.

Remark. It would be interesting to translate the causal structure underlying the
observable net, due to a universal maximal velocity of propagation of information,
i.e. c �= ∞, purely in logical terms, like the non-distributivity of the propositional
lattice in quantum systems reflects the limitations imposed by h̄ �= 0. Relevant
steps in this direction can be found in Haag (1992) and Mundici (1984).

The elements of the Poincaré group P↑
+ act as automorphisms on the net

preserving the local structure. Among the irreducible representations of A on a
separable Hilbert space in which the Poincaré group is unitarily implemented,
there is one, π0, called the vacuum representation (for simplicity assumed unique)
containing a ray, the vacuum, invariant under the unitary representation of P↑

+. In
infinite systems, as the one considered in RQFT, it appears in concrete examples
that physically one should not consider the set of all the representations, but only a
subset of “physically realizable” ones. The properties of RQFT at zero temperature
and density are discussed in terms of the net {A(O) = π0(A(O))}O⊂M4 . A(O) can
be identified as the “space of bounded continuous observables in the vacuum
representation measurable in O.” In view of Theorem 3.2, B(A(O)) � π0(A(O))′′

(and are these concrete algebras that appear in the constructive approach to RQFT
in low dimensions (Glimm and Jaffe, 1987)); since these algebras are von Neumann
algebras, P(B(A(O))) is a complete lattice. A deep result of RQFT with mass
gap is that π0(A(O))′′ for O a double cone is a type III1 von Neumann algebra
(Fredenhagen, 1985), conjectured on physical grounds to be a factor (Haag, 1992).
Hence the associated lattice of propositions is non-atomic, the projectors having
Murray-von Neumann dimensions only 0, ∞. In the Baire approach the σ -normal
states are the normal states of π0(A(O))′′, however a factor III1 does not possess
pure normal states. Nevertheless in our approach pure logical states corresponding
to maximal knowledge on the proposition lattice of the local system are naturally
defined, as they are obtained from lifts of states on π0(A(O)), which being a
C∗-algebra with unity has a separating family of pure states.

5. CONCLUSIONS

Summarizing, in this paper we propose that the lattice of elementary proposi-
tions of physical systems is completely encoded in the C∗-algebra A of “continuous
bounded functions or observables” on a generally “non-commutative phase space
X” in the sense of Non Commutative Geometry. The propositional lattice can be
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represented as the σ -complete orthomodular lattice of projectors of the space of
“(Baire) measurable bounded observables on X”, which can be obtained as a suit-
able closure, via the Baire envelope, of A. Hence the propositional logic depends
on the physical system, but it captures only a very “coarse grained” structure of
it. For example it is able to identify the classical or quantum nature of the system
and it is sensible to the related “completeness” or “incompleteness” through the
verification of the validity of the Lindenbaum property (Giuntini, 1987) in the
corresponding logic. But it is also able to distinguish more refined features of
quantum systems e.g. the presence of a countable from a non-countable set of
superselection sectors or the “dimension” in the sense of Murray–von Neumann
of the sectors.
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